Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
J Am Soc Nephrol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630537

RESUMO

BACKGROUND: Hyperglycaemia influences the development of glomerular endothelial cell damage and nowhere is this more evident than in the progression of diabetic kidney disease (DKD). While the Set7 lysine methyltransferase is a known hyperglycaemic sensor, its role in endothelial cell function in the context of DKD remains poorly understood. METHODS: Single-cell transcriptomics was used to investigate Set7 regulation in a mouse model of DKD, followed by validation of findings using pharmacological and shRNA inhibition of Set7. RESULTS: Set7 knockout (Set7KO) improved glomerular structure and albuminuria in a mouse model of diabetes. Analysis of single cell RNA-seq (scRNA-seq) data showed dynamic transcriptional changes in diabetic renal cells. Set7KO controls phenotype switching of GEN cell populations through transcriptional regulation of IGFBP5 (Insulin growth factor binding protein 5). Chromatin immunoprecipitation assays confirmed the expression of the IGFBP5 gene was associated with mono- and di-methylation of histone H3 lysine 4 (H3K4me1/2). The generalisability was investigated in human renal and circulating hyperglycaemic cells exposed to TGFß1. We show that the highly selective Set7 inhibitor, PFI-2, attenuated indices associated with renal cell damage and mesenchymal transition; specifically (i) reactive oxygen species production, (ii) IGFBP5 gene regulation, and (iii) expression of mesenchymal markers. Furthermore, renal benefit observed in Set7KO diabetic mice closely correspond in human GEN cells with PFI-2 inhibition or Set7 shRNA silencing. CONCLUSIONS: Set7 regulates the phenotypic endothelial-mesenchymal transition (EDMT) switch and suggest that targeting the lysine methyltransferase could protect glomerular cell injury in DKD.

2.
Am J Kidney Dis ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551531

RESUMO

RATIONALE & OBJECTIVE: Evidence has demonstrated that albuminuria is a key diagnostic and prognostic marker of diabetic chronic kidney disease, but the impact of its day-to-day variability has not been adequately considered. This study quantified within-individual variability of albuminuria in people with type 2 diabetes to inform clinical albuminuria monitoring. STUDY DESIGN: Descriptive cross-sectional analysis. SETTING & PARTICIPANTS: People with type 2 diabetes (n=826, 67.1 [IQR, 60.3-72.4] years, 64.9% male) participating in the Progression of Diabetic Complications (PREDICT) cohort study. EXPOSURE: Four spot urine collections for measurement of urinary albumin-creatinine ratio (UACR) within 4 weeks. OUTCOME: Variability of UACR. ANALYTICAL APPROACH: We characterized within-individual variability (coefficient of variation [CV], 95% limits of random variation, intraclass correlation coefficient), developed a calculator displaying probabilities that any observed difference between a pair of UACR values truly exceeded a 30% difference, and estimated the ranges of diagnostic uncertainty to inform a need for additional UACR collections to exclude or confirm albuminuria. Multiple linear regression examined factors influencing UACR variability. RESULTS: We observed high within-individual variability (CV 48.8%; 95% limits of random variation showed a repeated UACR to be as high/low as 3.78/0.26 times the first). If a single-collection UACR increased from 2 to 5mg/mmol, the probability that UACR actually increased by at least 30% was only 50%, rising to 97% when 2 collections were obtained at each time point. The ranges of diagnostic uncertainty were 2.0-4.0mg/mmol after an initial UACR test, narrowing to 2.4-3.2 and 2.7-2.9mg/mmol for the mean of 2 and 3 collections, respectively. Some factors correlated with higher (female sex; moderately increased albuminuria) or lower (reduced estimated glomerular filtration rate and sodium-glucose cotransporter 2 inhibitor/angiotensin-converting enzyme inhibitor/angiotensin receptor blocker treatment) within-individual UACR variability. LIMITATIONS: Reliance on the mean of 4 UACR collections as the reference standard for albuminuria. CONCLUSIONS: UACR demonstrates a high degree of within-individual variability among individuals with type 2 diabetes. Multiple urine collections for UACR may improve capacity to monitor changes over time in clinical and research settings but may not be necessary for the diagnosis of albuminuria. PLAIN-LANGUAGE SUMMARY: Albuminuria (albumin in urine) is a diagnostic and prognostic marker of diabetic chronic kidney disease. However, albuminuria can vary within an individual from day to day. We compared 4 random spot urinary albumin-creatinine ratio (UACR) samples from 826 participants. We found that a second UACR collection may be as small as a fourth or as large as almost 4 times the first sample's UACR level. This high degree of variability presents a challenge to our ability to interpret changes in albuminuria. Multiple collections have been suggested as a solution. We have constructed tools that may aid clinicians in deciding how many urine collections are required to monitor and diagnose albuminuria. Multiple urine collections may be required for individual monitoring but not necessarily for diagnosis.

3.
Kidney Med ; 6(3): 100783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419787

RESUMO

Rationale & Objective: Kidney function progressively declines in most patients with type 2 diabetes (T2DM). Many develop progressive chronic kidney disease (CKD), but some experience a more rapid decline, with a greater risk of kidney failure and cardiovascular disease. In EMPA-REG OUTCOME, empagliflozin was associated with slower kidney disease progression. This post hoc analysis evaluated the effect of empagliflozin (pooled doses) on the prevalence of a "rapid decliner" phenotype, defined by an annual estimated glomerular filtration rate (eGFR) decline of >3 mL/min/1.73 m2. Study Design: This was an exploratory analysis of EMPA-REG OUTCOME, a large randomized, double-blind, placebo-controlled trial in adults with T2DM, established cardiovascular disease and an eGFR of ≥30 mL/min/1.73 m2. Setting & Participants: Analysis was undertaken on 6,967 participants (99.2%) in whom serial eGFR data was available. Interventions: Patients were randomized (1:1:1) to empagliflozin 10 mg, 25 mg, or placebo in addition to standard of care. Outcomes: Annual change in eGFR over the maintenance phase of treatment (week 4 to last value on treatment) was calculated using linear regression models. Logistic regression analysis was used to investigate differences in rapid decline between the treatment groups. Results: Over the study period, a rapid decliner phenotype was observed in 188 (9.5%) participants receiving placebo and 134 (3.4%) receiving empagliflozin. After adjusting for other risk factors, this equated to a two-third reduction in odds (OR, 0.32; 95% CI, 0.25-0.40; P < 0.001) among participants receiving empagliflozin versus placebo. A comparable risk reduction was observed using a threshold of eGFR decline of >5 mL/min/1.73 m2/y (empagliflozin vs placebo, 43 [1.1%] vs 44 [2.2%] participants; OR, 0.47; 95% CI, 0.31-0.72; P < 0.001). Limitations: This is a post hoc analysis of a trial undertaken in participants with T2DM and CVD. Generalization of findings to other settings remains to be established. Conclusions: Patients receiving empagliflozin were significantly less likely to experience a rapid decline in eGFR over a median of 2.6 years of exposure to the study drug. Funding: The Boehringer Ingelheim and Eli Lilly and Company Diabetes Alliance. Trial Registration: clinicaltrials.gov ID: NCT01131676.


In most people with type 2 diabetes, their kidney function starts to decline over time. However, in some people, this can happen more rapidly, which can increase their risk of kidney or cardiovascular disease. A major study, EMPA-REG OUTCOME, has shown that empagliflozin, which helps to control blood sugar in people with type 2 diabetes, also reduced the risk of cardiovascular disease events and slowed the progression of kidney disease, when compared with people in the study who received placebo. In this new research from the same major study empagliflozin, compared with a placebo, was shown to reduce the risk of people having a rapid decline in their kidney function over the 3 years of the study.

4.
JAMA Cardiol ; 9(2): 134-143, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170502

RESUMO

Importance: Previous studies have reported an association between hypoglycemia and cardiovascular (CV) events in people with type 2 diabetes (T2D), but it is unclear if this association is causal or identifies a high-risk patient phenotype. Objective: To evaluate the associations between hypoglycemia and CV outcomes. Design, Setting, and Participants: This secondary analysis was a post hoc assessment of the multinational, double-blind CARMELINA (Cardiovascular and Renal Microvascular Outcome Study With Linagliptin; 2013-2016) and CAROLINA (Cardiovascular Outcome Trial of Linagliptin vs Glimepiride in Type 2 Diabetes; 2010-2018) randomized clinical trials of the antihyperglycemic drug, linagliptin, a dipeptidyl peptidase 4 inhibitor. Participants were adults with T2D at high CV risk with or without high kidney risk. By design, participants in the CARMELINA trial had longer duration of T2D and had a higher CV risk than participants in the CAROLINA trial. Data analyses were conducted between June 2021 and June 2023. Intervention: Linagliptin or placebo in the CARMELINA trial, and linagliptin or glimepiride in the CAROLINA trial. Main Outcomes and Measures: The primary outcome for both trials was CV death, myocardial infarction (MI), or stroke (3-point major adverse CV events [3P-MACE]). For the present analyses, hospitalization for heart failure (HF) was added. Hypoglycemia was defined as plasma glucose less than 54 mg/dL or severe hypoglycemia (episodes requiring the assistance of another person). Associations between the first hypoglycemic episode and subsequent CV events and between nonfatal CV events (MI, stroke, hospitalization for HF) and subsequent hypoglycemic episodes were assessed using multivariable Cox proportional hazards regression models. Sensitivity analyses explored the risk of CV events within 60 days after each hypoglycemic episode. Results: In the CARMELINA trial (6979 patients; 4390 males [62.9%]; mean [SD] age, 65.9 [9.1] years), there was an association between hypoglycemia and subsequent 3P-MACE plus hospitalization for HF (hazard ratio [HR], 1.23; 95% CI, 1.04-1.46) as well as between nonfatal CV events and subsequent hypoglycemia (HR, 1.39; 95% CI, 1.06-1.83). In the CAROLINA trial (6033 patients; 3619 males (60.0%); mean [SD] age, 64.0 [9.5] years), there was no association between hypoglycemia and subsequent 3P-MACE plus hospitalization for HF (HR, 1.00; 95% CI, 0.76-1.32) and between nonfatal CV events and subsequent hypoglycemia (HR, 1.44; 95% CI, 0.96-2.16). In analyses of CV events occurring within 60 days after hypoglycemia, there was either no association or too few events to analyze. Conclusions and Relevance: This study found bidirectional associations between hypoglycemia and CV outcomes in the CARMELINA trial but no associations in either direction in the CAROLINA trial, challenging the notion that hypoglycemia causes adverse CV events. The findings from the CARMELINA trial suggest that both hypoglycemia and CV events more likely identify patients at high risk for both. Trial Registration: ClinicalTrials.gov Identifier: NCT01897532 (CARMELINA) and NCT01243424 (CAROLINA).


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Hipoglicemia , Infarto do Miocárdio , Acidente Vascular Cerebral , Compostos de Sulfonilureia , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Linagliptina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Risco , Ensaios Clínicos Controlados Aleatórios como Assunto , Hipoglicemiantes/uso terapêutico , Hipoglicemia/induzido quimicamente , Hipoglicemia/epidemiologia , Hipoglicemia/complicações , Insuficiência Cardíaca/complicações , Infarto do Miocárdio/tratamento farmacológico , Acidente Vascular Cerebral/induzido quimicamente
5.
Kidney Int ; 105(1): 18-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182288

RESUMO

Y-box-binding protein 1 is a well-described and important regulator of gene transcription, which is linked to various pathologic conditions, including inflammation and fibrosis of the kidney. The identification of a novel and protective crosstalk pathway between podocytes and tubular cells in the kidney with Y-box-binding protein 1 acting as a paracrine messenger sheds new light and provides novel opportunities for renoprotection.


Assuntos
Nefropatias , Proteína 1 de Ligação a Y-Box , Humanos , Rim , Células Epiteliais , Inflamação
6.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069998

RESUMO

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Experimental/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Inflamação
8.
Presse Med ; 52(1): 104178, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37783423

RESUMO

Major clinical advances over the last 20 years in the area of diabetic kidney disease (DKD) have been confirmed in large seminal clinical trials. These findings add to the previously identified benefits resulting from intensive glucose and blood pressure control therapies. Furthermore, newer glucose lowering treatments such as SGLT2 inhibitors and GLP-1 agonists appear very promising and are likely to transform the management and outlook of DKD over the next decade. In addition, novel mineralocorticoid receptor antagonists and a recently reported trial with an endothelin receptor blocker also have the potential to change clinical practice.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Rim , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico
9.
Diabetes Res Clin Pract ; 204: 110918, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37748713

RESUMO

AIMS: To investigate epigenomic indices of diabetic kidney disease (DKD) susceptibility among high-risk populations with type 2 diabetes mellitus. METHODS: KDIGO (Kidney Disease: Improving Global Outcomes) clinical guidelines were used to classify people living with or without DKD. Differential gene methylation of DKD was then assessed in a discovery Aboriginal Diabetes Study cohort (PROPHECY, 89 people) and an external independent study from Thailand (THEPTARIN, 128 people). Corresponding mRNA levels were also measured and linked to levels of albuminuria and eGFR. RESULTS: Increased DKD risk was associated with reduced methylation and elevated gene expression in the PROPHECY discovery cohort of Aboriginal Australians and these findings were externally validated in the THEPTARIN diabetes registry of Thai people living with type 2 diabetes mellitus. CONCLUSIONS: Novel epigenomic scores can improve diagnostic performance over clinical modelling using albuminuria and GFR alone and can distinguish DKD susceptibility.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicações , Albuminúria/complicações , Suscetibilidade a Doenças/complicações , Epigenômica , Austrália , Rim , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Biomarcadores , Taxa de Filtração Glomerular
10.
Endocr Connect ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37159343

RESUMO

Sodium-glucose co-transporter 2 (SGLT2) inhibitors have recently emerged as an effective means to protect kidney function in people with type 2 diabetes and chronic kidney disease (CKD). In this review, we explore the role of SGLT2 inhibition in these individuals. SGLT2 inhibitors specifically act to inhibit sodium and glucose reabsorption in the early proximal tubule of the renal nephron. Although originally developed as glucose-lowering agents through their ability to induce glycosuria, it became apparent in cardiovascular outcome trials that the trajectory of kidney function decline was significantly slowed and the incidence of serious falls in kidney function was reduced in participants receiving an SGLT2 inhibitor. These observations have recently led to specific outcome trials in participants with CKD, including DAPA-CKD, CREDENCE and EMPA-KIDNEY, and real-world studies, like CVD-REAL-3, that have confirmed the observation of kidney benefits in this setting. In response, recent KDIGO Guidelines have recommended the use of SGLT2 inhibitors as first-line therapy in patients with CKD, alongside statins, renin-angiotensin-aldosterone system inhibitors and multifactorial risk factor management as indicated. However, SGLT2 inhibitors remain significantly underutilized in the setting of CKD. Indeed, an inertia paradox exists, with patients with more severe disease less likely to receive an SGLT2 inhibitor. Concerns regarding safety appear unfounded, as acute kidney injury, hyperkalaemia, major acute cardiovascular events and cardiac death in patients with CKD appear to be lower following SGLT2 inhibition. The first-in-class indication of dapagliflozin for CKD may begin a new approach to managing kidney disease in type 2 diabetes.

11.
Biomed Pharmacother ; 158: 114211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916437

RESUMO

Methylglyoxal (MGO) is a reactive glucose metabolite linked to diabetic cardiovascular disease (CVD). MGO levels surge during intermittent hyperglycemia. We hypothesize that these MGO spikes contribute to atherosclerosis, and that pyridoxamine as a MGO quencher prevents this injury. To study this, we intravenously injected normoglycemic 8-week old male C57Bl6 ApoE-/- mice with normal saline (NS, n = 10) or 25 µg MGO for 10 consecutive weeks (MGOiv, n = 11) with or without 1 g/L pyridoxamine (MGOiv+PD, n = 11) in the drinking water. We measured circulating immune cells by flow cytometry. We quantified aortic arch lesion area in aortic roots after Sudan-black staining. We quantified the expression of inflammatory genes in the aorta by qPCR. Intermittent MGO spikes weekly increased atherosclerotic burden in the arch 1.8-fold (NS: 0.9 ± 0.1 vs 1.6 ± 0.2 %), and this was prevented by pyridoxamine (0.8 ± 0.1 %). MGOiv spikes increased circulating neutrophils and monocytes (2-fold relative to NS) and the expression of ICAM (3-fold), RAGE (5-fold), S100A9 (2-fold) and MCP1 (2-fold). All these changes were attenuated by pyridoxamine. This study suggests that MGO spikes damages the vasculature independently of plasma glucose levels. Pyridoxamine and potentially other approaches to reduce MGO may prevent excess cardiovascular risk in diabetes.


Assuntos
Aorta Torácica , Aterosclerose , Camundongos , Masculino , Animais , Aorta Torácica/metabolismo , Piridoxamina/farmacologia , Aldeído Pirúvico/metabolismo , Óxido de Magnésio , Aterosclerose/prevenção & controle , Apolipoproteínas E
12.
Adv Mater ; 35(21): e2210392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908046

RESUMO

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico , Insulina
13.
Cell Metab ; 35(2): 253-273, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754019

RESUMO

Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.


Assuntos
Sistema Cardiovascular , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Rim
14.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36633903

RESUMO

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Estudo de Associação Genômica Ampla , Células Endoteliais/metabolismo , Metilação de DNA , Insulina/metabolismo
16.
Expert Opin Ther Targets ; 26(8): 721-738, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36217308

RESUMO

INTRODUCTION: Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED: Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-ß-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-ß signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-ß and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION: TGF-ß is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-ß signaling rather than TGF-ß itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Falência Renal Crônica , MicroRNAs , Humanos , Fator de Crescimento Transformador beta/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Fator de Crescimento do Tecido Conjuntivo , Proteína Morfogenética Óssea 7 , Fator de Crescimento de Hepatócito , Ligantes , Fibrose , Inflamação/patologia , Histona Desacetilases , Autoantígenos , Fatores de Crescimento Transformadores , Rim/metabolismo , Rim/patologia
17.
Diabetes Metab Syndr Obes ; 15: 2847-2856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148023

RESUMO

Objective: The rate of kidney function decline in patients with diabetic kidney disease (DKD) is known to differ. This study analyzed the clinicopathologic features and related risk factors affecting long-term renal survival in Chinese type 2 diabetic patients with rapid estimated glomerular filtration rate (eGFR) decline. Methods: In this retrospective descriptive study, 191 DKD patients were first classified as rapid eGFR decliners and slow eGFR decliners on the basis of the median eGFR slope value (-8.0 mL/min/1.73 m2/year). In total, 96 patients with rapid eGFR decline were included in the analyses and subsequently allocated to end-stage renal disease (ESRD) and non-ESRD groups. Baseline clinicopathological data of rapid eGFR decliners were collected. Cox proportional hazard analysis was performed to calculate the hazard ratios (HRs) for progression to ESRD. Results: During a median follow-up of 25 months, 52 (54.2%) rapid eGFR decliners progressed to ESRD. These 52 rapid eGFR decliners had poorer renal function, lower hemoglobin and albumin concentrations, higher total cholesterol and baseline proteinuria levels, and more severe interstitial inflammation than those who did not progress to ESRD. After adjustment for age, gender, baseline eGFR, proteinuria, hemoglobin level, serum albumin concentration, and histopathologic parameters, multivariate Cox proportional hazard analysis revealed that eGFR (HR 0.973, 95% CI 0.956-0.989) and proteinuria (HR 1.125, 95% CI 1.030-1.228) were associated with the increased risk of progression to ESRD. Conclusion: Higher proteinuria and lower eGFR were independent risk factors for renal progression in Chinese patients with type 2 diabetes and rapid eGFR decline.

18.
Pathogens ; 11(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015023

RESUMO

Aims: We investigate how fasting blood glucose (FBG) levels affect the clinical severity in coronavirus disease 2019 (COVID-19) patients, pneumonia patients with sole bacterial infection, and pneumonia patients with concurrent bacterial and fungal infections. Methods: We enrolled 2761 COVID-19 patients, 1686 pneumonia patients with bacterial infections, and 2035 pneumonia patients with concurrent infections. We used multivariate logistic regression analysis to assess the associations between FBG levels and clinical severity. Results: FBG levels in COVID-19 patients were significantly higher than in other pneumonia patients during hospitalisation and at discharge (all p < 0.05). Among COVID-19 patients, the odds ratios of acute respiratory distress syndrome (ARDS), respiratory failure (RF), acute hepatitis/liver failure (AH/LF), length of stay, and intensive care unit (ICU) admission were 12.80 (95% CI, 4.80−37.96), 5.72 (2.95−11.06), 2.60 (1.20−5.32), 1.42 (1.26−1.59), and 5.16 (3.26−8.17) times higher in the FBG ≥7.0 mmol/L group than in FBG < 6.1 mmol/L group, respectively. The odds ratios of RF, AH/LF, length of stay, and ICU admission were increased to a lesser extent in pneumonia patients with sole bacterial infection (3.70 [2.21−6.29]; 1.56 [1.17−2.07]; 0.98 [0.88−1.11]; 2.06 [1.26−3.36], respectively). The odds ratios of ARDS, RF, AH/LF, length of stay, and ICU admission were increased to a lesser extent in pneumonia patients with concurrent infections (3.04 [0.36−6.41]; 2.31 [1.76−3.05]; 1.21 [0.97−1.52]; 1.02 [0.93−1.13]; 1.72 [1.19−2.50], respectively). Among COVID-19 patients, the incidence rate of ICU admission on day 21 in the FBG ≥ 7.0 mmol/L group was six times higher than in the FBG < 6.1 mmol/L group (12.30% vs. 2.21%, p < 0.001). Among other pneumonia patients, the incidence rate of ICU admission on day 21 was only two times higher. Conclusions: Elevated FBG levels at admission predict subsequent clinical severity in all pneumonia patients regardless of the underlying pathogens, but COVID-19 patients are more sensitive to FBG levels, and suffer more severe clinical complications than other pneumonia patients.

19.
Signal Transduct Target Ther ; 7(1): 248, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864094

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that selectively destroys insulin-producing ß-cells in the pancreas. An unmet need in diabetes management, current therapy is focussed on transplantation. While the reprogramming of progenitor cells into functional insulin-producing ß-cells has also been proposed this remains controversial and poorly understood. The challenge is determining why default transcriptional suppression is refractory to exocrine reactivation. After the death of a 13-year-old girl with established insulin-dependent T1D, pancreatic cells were harvested in an effort to restore and understand exocrine competence. The pancreas showed classic silencing of ß-cell progenitor genes with barely detectable insulin (Ins) transcript. GSK126, a highly selective inhibitor of EZH2 methyltransferase activity influenced H3K27me3 chromatin content and transcriptional control resulting in the expression of core ß-cell markers and ductal progenitor genes. GSK126 also reinstated Ins gene expression despite absolute ß-cell destruction. These studies show the refractory nature of chromatin characterises exocrine suppression influencing ß-cell plasticity. Additional regeneration studies are warranted to determine if the approach of this n-of-1 study generalises to a broader T1D population.


Assuntos
Diabetes Mellitus Tipo 1 , Pâncreas Exócrino , Adolescente , Cromatina , Diabetes Mellitus Tipo 1/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Insulina/genética , Insulina/metabolismo , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo
20.
Expert Opin Pharmacother ; 23(7): 791-803, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35522659

RESUMO

INTRODUCTION: Diabetic kidney disease (DKD) remains a major cause of morbidity and mortality in diabetes and is a key cause of end-stage kidney disease (ESKD) worldwide. Major clinical advances have been confirmed in large trials demonstrating renoprotection, adding to the benefits of existing intensive glucose and blood pressure control therapies. Furthermore, there are exciting new treatments predominantly at an experimental and early clinical phase which appear promising. AREAS COVERED: The authors review DKD in the context of existing and emerging therapies affording cardiorenal benefits including SGLT2 inhibitors and GLP-1 receptor agonists. They explore novel therapies demonstrating potential including a newly developed mineralocorticoid receptor antagonist and endothelin receptor blockade, while evaluating the utility of DPP4 inhibitors in current clinical practice. They also consider the recent evidence of emerging therapies targeting metabolic pathways with enzyme inhibitors, anti-fibrotic agents, and agents modulating transcription factors. EXPERT OPINION: Significant improvements have been made in the management of DKD with SGLT2i and GLP-1 agonists providing impressive renoprotection, with novel progress in renin-angiotensin-aldosterone system (RAAS) blockade with finerenone. There is also great potential for several new experimental therapies. These advances provide us with optimism that the outlook of this devastating condition will continue to improve.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Diabetes Mellitus/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Humanos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Sistema Renina-Angiotensina , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...